CHM4Clarion

Change from HLP to CHM in 4 lines of Code

Features:
Just 4 lines of code in Frame provides CHM help for all procedures with HLP()
Modification to just your EXE App, none to DLL Apps

Hand coded source procedure window help handled automatically
Choose HLP or CHM at runtime

Works in all 32-bit versions of Clarion including 2, 4, 5, 5.5 and 6.

Tested with Clarion 7 Alpha.
Works with ABC, Legacy or Hand Coded based APP’s and PRJ’s.

Built to fail gracefully and not crash due to HtmlHelp OCX problems
Fast startup, most initialization done when user presses F1 first time
All source included, no black box DLLs

Handles CHM Network Security Issues

FindHlp utility verifies all your Clarion code context strings are in the CHM

SlideShowCHM allows viewing all help topics in a slide show
Help Context / URL being opened shows in DebugView

Chm4Clarion is different from all other CHM solutions that require:

A template added in every APP (EXE and DLL)

Template adds templates and code to every Window procedure

Hand coded windows require code added manually to show CHM

CHM / HLP choice must be made at compile time

Blackbox DLL cwHH.dll

cwHH works best with C6, somewhat with 5.5
No support for C5 and prior

No utilities to validate context strings

To purchase:

https://secure.bmtmicro.com/servlets/Orders.ShoppingCart?CID=248&PRODUCTID=2480000
Installation
This product is shipped as a single zip file. To install it follow these steps:
1. Create a directory to hold the files e.g. C:\C6\3rdparty\Chm4Clarion

2. Unzip the Chm4Clarion.zip file into the directory

3. Open Clarion and compile the PRJ’s

4. Get the Class INC and CLW into the compile stream (see below)

The Class files (CBHlpCHM.INC and CBHlpCHM.CLW) must be in the compiler’s RED search paths list. You have 3 possible ways to do this. The simplest way to get started is Option Aand put the files into each project directory . Option B is the best choice and will make this class available to all projects. If you have other accessories in a 3rdParty\LibSrc directory, then place these class files there. If you have multiple versions of Clarion (e.g. 5.5, 6 and 7) then Options B & C need to be performed for each Clarion.

Option A – Copy the Class files into each project directory

Option B – Copy the Class files into X:\Clarion#\LibSrc

Option C – Copy the Class files into X:\Clarion#\3rdParty\LibSrc
These additional free tools should be downloaded and installed under the Chm4Clarion directory.

1. From www.helpfulsolutions.com

2. Download Help File Explorer http://www.helpfulsolutions.com/Hhxplore.zip
3. Unzip this into Chm4Clarion\HHxplore directory

4. The EXE name to run is HHXplore.exe

5. From www.sysinternals.com download Debug View
	File
	Purpose

	cbhlpchm.clw
	Class code for CHM4Clarion

	cbhlpchm.inc
	Class include file for CHM4Clarion

	cbhlpchm_instrux.doc
	Instructions in Word Document

	hlpfind.clw
	Help Find in Source Tool to find HLP Contexts

	hlpfind.prj
	HlpFind Project, open and compile to use

	networkchmallow.reg
	Registry entries to allow viewing CHM in a Network Share

	networkchmdisable.reg
	Registry entries to prevent viewing CHM in a Network Share

	SlideShowCHM.clw
	CHM Slide Show Utility Source

	SlideShowCHM.prj
	CHM Slide Show Project, open and compile

	shiplist.txt
	List of file shipped

	starter.chm.ini
	INI file to configure CHM for Class, starter

	test_cbhlpchm_sdi.clw
	Example using class Source

	test_cbhlpchm_sdi.prj
	Example using class Project

	t_55test.app
	Example using class APP

Adding to a Clarion Application
The complete solution involves two steps. First you need to add about 4 lines of code to implement my CHM class. That’s easily done and takes about 5 minutes.
The second step is more painful. You have to figure out how well the Context ID’s in your Clarion code map to your new CHM file and translate any problem contexts. This step would be required no matter what product you use for CHM. I provide a HlpFind utility and methods to help you. The usual problems are a path prefix, context strings with reserved characters (%#@?*.), and mid-topic jump contexts.
The required implementation is to have a single object instance of the CBHlpChmClass running for the life of the time your program has windows open. Once the object is disposed or destructed it can no longer show CHM help. The suggested implementation is to declare and init the class in your Application frame. This window is normally open the entire time your program is running.
Steps to implement:
1. Open the App that contains your Frame, normally your EXE App

2. Open Global, then Embeds
3. Open the embed point “After Global Includes”
4. Paste in the below code
 include('CBHlpChm.inc'),ONCE !Chm4Clarion

5. Close Global and return to procedure Tree

6. Open your Application Frame properties, then Embeds
7. Open a Data embed (for ABC “Local Data”, for Legacy “Data Section”) and add the below code to declare an instance of the class
CBHlp2Chm class(CBHlpChmClass) !Chm4Clarion
 end

8. Open an early code embed point. For ABC use “WindowManager Init Initialize the procedure”. For Legacy use “Procedure Setup"
9. Add the below code to initialize the class to handle help calls and define the name of your CHM file.
 !Optional: IF EXISTS('YourHelp.chm') THEN
 r# = CBHlp2Chm.Init('YourHelp.chm','YourHelp.Chm.Ini')
 if r# then Message('CHM Init Failed Reason ' & r#).
 !Note HELP() can no longer change files

Transition tip: you can wrap the above code in an IF EXISTS(‘YourHelp.CHM’) so that if the CHM does not exist the HLP file is still displayed. Handy during the time you are developing your CHM so you can test it in house, but still use HLP for customers.
10. Make sure your Application Frame has a HLP() topic defined. Under WinHelp a frame without HLP() automatically displayed the contents page. Under CHM you must explicitly define a topic e.g. HLP(‘~Contents’)

11. In your EXE directory create an INI text file named “YourHelp.CHM.INI” and paste into the contents of the “Starter.CHM.INI” included with the install files and on the next page.
12. Compile your code and run it. Press F1 to see if your CHM help topics display.

13. You may need to configure the “CHM.INI” file for certain properties and topics. See the section on “Configuring CHM.INI and Validating Help links”
Starter.Chm.Ini
[Notes]

; This file should be named the same as your CHM file with an INI extension

; e.g. "MyProduct.CHM.INI"

; File would be specified in the CBHlpChm.Ini('MyHelp.CHM','MyHelp.CHM.INI')

; This file has configuration info about your CHM so it can be kept external

; to the Clarion code and reconfigured when the CHM file changes.

;-----------------

[Init]

TopicBasePath=

; TopicBasePath=

; Sub folder in which all the HTM files are located in the CHM project

; , frequently blank, frequently Topics\

; If you are unsure open CHM file using HHxplore www.helpfulsolutions.com

; and look at #URLSTR to see if URL's are "folder/topic.htm"

; So with this all contexts get translated: Topic = TopicBasePath/Context.htm

;VerboseDebug=1

; to send more info DebugView info

;-----------------

[Topic]

;context=CHM_Topic4context (do not use ~context, just context=)

; For mapping a HLP(~context) string to a CHM URL

; looks up a context and calls the CHM with the CHM_Topic4context you provide,

; plus the base path is added, and '.htm' is added (if not there)

; so CHM Topic = TopicBasePath/CHM_Topic4context

; If HLP topics have periods, then under CHM those may change to underscores
; other html reserved characters (? # %) may also change

; so use [Topic] sectin entries to translate

; e.g. "HowDoI...=HowDoI___" will replace HLP('~HowDoI...') and open "HowDoI___.htm"

; Another option would be to edit your HLP project and CLW code to get rid of the

; periods so no [Topic] is needed

; You can use HlpFind.exe to load all your context strings and then search for periods

;-----------------

[MidTopic]

;context=BaseTopic

; So CHM Topic = TopicBasePath/BaseTopic.htm#context

; In WinHelp you could jump directly to an MidTopic target named ~MidTopic

; In HtmlHelp it's HTML so you need to use basefile.htm#anchor format

; You can use the FindHlp program to find all of your MidTopic jumps so

; you know which ones to fix

;

; These topic translations are ment for backward compatibility of current HLP.

; Once you standardize on CHM if there's an anchor you should

; enter the CHM topic e.g. HLP('~basetopic.htm#AnchorName')

; because under CHM the Anchor names may not be unique like they are under HLP

Configuring CHM.INI and Validating Help links

WinHelp looks up topics using a “context string” that in Clarion code is defined with HLP(‘~context’). Html Help uses a Topic URL that is normally the file name containing the help e.g. ‘Invoice.htm’. When you converted your HLP to CHM you should have named the html files using the current context string so the basic conversion from ‘~context’ to topic is simply a matter of removing the tilde and adding ‘.htm’ e.g. HLP(‘~invoicing’) opens the topic ‘Invoicing.htm’.
The CHM4Clarion default conversion is to remove the tilde and add ‘.htm’. This conversion logic can be modified by including an INI file that I will refer to as the “CHM.INI” file and I suggest you name it the same as your CHM file with an INI extension. This file needs to be shipped with your product. Having these parameters external to your program allows your help file to change structure without changing any Clarion code.

The simple “add .htm” method fails to work with two common issues:
1. Context strings with characters (?*.%#) that are not allowed in file names or URLs. When the HLP is converted to CHM the special character will get changed or removed. These need a [Topic] translation in the CHM.INI. Or I think it would be best to change the HLP file and Clarion code to remove the character so the topic does not need special treatment.
2. Context strings that jump to a mid-topic target. These need to [MidTopic] entry to translate them into html anchor syntax of “maintopic.htm#midtopic”.
The CHM.INI file is not required, you may go edit your Clarion code HLP() references to adjust for the changed topics. But then you may not be able to still use your HLP file. I wanted to keep my HLP file usable and still be able to test my new CHM file during the month it took to get all the help converted.
To configure help you will need a list of all of your CHM Help topics that I will call the “URL.TXT” file. You may get this from your Help tool or here is how to extract it from your CHM using Help Explorer:

1. Run HHxplore.exe and open your CHM file

2. Click on the #URLSTR tree node

3. The Topics list displays on the Strings tab

4. Right click on the strings and select “Save List as Text File…”

5. Save the file as “Helpfile.chm.URL.TXT”
[image: image1.jpg]
You can see from the screen shot that these are just HTM file names.
Here are the steps to validating your HLP to CHM conversion and configuring your CHM.INI file:
1. TopicBasePath: Do the topic URLs all start with a path prefix? E.g. “html\introduction.htm” has a path prefix of “html” prefixed. You would see this in your URLSTR list as shown below:
[image: image2.jpg]
If you find this edit the CHM.INI file to have:
[Init]
TopicBasePath=yourbasepath.
2. Run HlpFind utility included. On the first enter your Source folder name and press the Load button to load a list of your source files.
[image: image3.jpg]

3. Click the Search4Hlp button and the Search Results tab shows
[image: image4.jpg]
You can double click on a line to open it in an editor and view the source. Notepad is the default but you can configure your choice in the source code.

4. Select the “CHM Topic Load” tab, click the “Load file of CHMTopics..” button and pick the CHM.URL.TXT file you created previously. It contains a list of all html topic files so the context strings and be validated against topics.
[image: image5.jpg]

5. Click on the “Find HLP Missing CHM” tab. If you already have a CHM.INI file defined then specify it. Click the Find missing button. It will take each HLP context string found and run it thru the translation process to get the Topic file, then look that up in the URL list. What is not found is displayed.
[image: image6.jpg]

6. The missing help is most likely a mid-topic jump or a changed topic that can be configured via the CHM.INI file.
Example 1: The context “Error?” the “?” is not allowed for disk files so the tpic file name is “Error_.htm”. In the CHM.INI [Topic] section add a line Error?=Error_
Example 2: The context “message_inserts” is a mid-topic jump that under CHM is referenced as “message.htm#message_inserts”. In the CHM.INI [MidTopic] section add a line message_inserts = message and the class will open the correct URL
7. How do you figure out what the main topic is? I normally use the “Test HelpID” tab to open the context string in the HLP file and see what page it opens.

SlideShowCHM.Prj
This utility contains a text box where you can paste a bunch of Context strings or CHM URLS. It will run each thru your CHM.INI conversion logic and open the CHM file topic.

The place to get the context list is using HlpFind. On the “Search Results” Tab or “Find HLP Missing” Tab. Click the Copy button on the upper right and push the “Column 1” button to place all context strings on the clipboard. (I would save them to a file for reuse.) Paste them in and click “Run Show”. Each topic will be displayed.

The original idea of this program was to use the HtmlHelp error to find out if each topic displayed correctly. Turns out Microsoft never implemented the Error API correctly. So you have to visually watch for failed topics. You can press the “II” button to pause the show and note the topic.
This can be very handy for testing the Contexts HlpFind says are broken. Once you have made the CHM.INI [Topic] and [MidTopic] entries you can test them all here. On the results tab you see the “HTML HelpURL” as translated by the class. The error code is bogus.
Here a list of some topics that causes me trouble

[image: image7.jpg]
The results tab shows the URL that was opened.

[image: image8.jpg]
Troubleshooting
Compiler Error: Error(2): cif$fileopen CBHlpChm.inc The system cannot find the file specified.

Fix: You do not have the class files CBHlpChm.Inc and CBHlpChm.Clw in the compiler RED path. See Installation instructions.

Compiler Error: Make error: Source file cbhlpchm.clw not found

Fix: You do not have the class file CBHlpChm.Clw in the compiler RED path. See Installation instructions.

Wrong topic (or no topic) is displayed when F1 is pressed
You can see exactly what the context conversion URL being opened in the CHM is by running DebugView. Every time the user presses F1 the CBHlpChm Class does an OutputDebugString of the URL. You may wish to setup your help author with DebugView so they can see what URL is opening and not have to ask you the context. The screen shot shown below is opening “paint_curves.htm”:
[image: image9.jpg]
There are a lot of CHM trouble shooting info and utilities at http://www.helpware.net
cwHH
cwHH is the SoftVelocity HTML Help solution you get free with Clarion. To use it requires adding templates to every App. They inject code into every procedure to handle help. Any hand coded source window procedures with help must edited to add code that implements the class.

Chm4Clarion cannot coexist with cwHH because cwHH will intercept the help call first. You will have to rip out or disable cwHH to use Chm4Clarion. The trouble with ripping out cwHH is you lose any functionality you implemented via the template. E.g. if you entered the Window help topic via the template you will lose that code. It’s best to avoid the template windows and just edit the HLP() on the window.
I would suggest the best way to rip out cwHH is to edit the templates to no longer generate the declaration of the object and no longer generate code that deals with changing Window properties to use the class. (Save a copy of the TPW files so you can restore them.)This will leave behind any code that uses the class. The compiler will error on it and you can decide how to deal with it.
